Master y Programa de Doctorado en "Ingeniería de Sistemas y de Control" UNED, 11-Abril-2019

SLAM Visual Basado en Características

Juan D. Tardós Universidad de Zaragoza, Spain <u>robots.unizar.es/SLAMLAB</u>

SLAMLAB: Members

Juan D. Tardós

José Neira

José A. Castellanos

José M^a M. Montiel

Javier Civera

Nader Mahmoud Ing. Informática

Chema Fácil Ing. Informática

María L. Rodríguez Matemáticas

José Lamarca Ing. Industrial

Berta Bescós Ing. Industrial

Javier Domínguez Ing. Industrial

Juan José Gómez Ing. Informática

Leonardo Fermín Ing. Electrónica

María Isabel Artigas Ing. Mecánica

Richard Elvira Ing. Informática

Carlos Campos Ing. Industrial

Blanca Guillén Ing. Industrial

Recent PhD Students

Pedro Piniés 🗯 Apple

Marta Salas accenture

Raúl Mur-Artal **o**culus

Alejo Concha Google

Yasir Latif

César Cadena **ETH** Zürich

Autonomous Systems Lab

Henry Carrillo

Antonio Agudo

Maite Lázaro

SLAM: Simultaneous Localization and Mapping

The SLAM problem:

 a robot moving in an unknown environment

Use sensor data to:

- **build a map** of the environment
- and at the same time
- use the map to compute the robot location

P. Newman, J.J Leonard, J.D. Tardos, J. Neira: Explore and return: Experimental validation of real-time concurrent mapping and localization. IEEE Int. Conf. Robotics and Automation, 2002

ORB-SLAM: Visual SLAM, 2015

ORB-SLAM2: Map Viewer

Juan D. Tardós

🏚 Es 🔍 15:51 🖞 rau

Applications: Robotics and 3D Modelling

Robot Navigation based on ORB-SLAM2

ORB-SLAM2 on mobile devices

Applications: AR/VR

- Obtain in real time the camera trajectory
- And build a map of the environment
- To add virtual elements to the environment

Applications: AR/VR

Gear VR Base

Oculus Rift Facebook Gear VR Samsung

Meta 2 Metavision

Hololens Microsoft

SLAM: User positional tracking

Outline

- 1. Feature-Based Visual SLAM
- 2. Features
- 3. Feature Matching
- 4. Relocation and Loop Closing
- 5. Putting all together: ORB-SLAM
- 6. ORB-SLAM2: Stereo and RGB-D
- 7. Visual-Inertial ORB-SLAM

1. Feature-Based Visual SLAM

Projection of point j on camera i (1)

$$\mathbf{T}_{iw} \in \mathrm{SE}(3) \quad \left\{ \begin{array}{ll} \mathbf{R}_{iw} \in \mathrm{SO}(3) & \text{Rotation matrix} \\ \mathbf{t}_{iw} \in \mathbb{R}^3 & \text{Translation vector} \end{array} \right.$$

$$\mathbf{x}_{ij} = \mathbf{R}_{iw}\mathbf{x}_{wj} + \mathbf{t}_{iw}$$

Coordinates of point *j* w.r.t. camera *i*

• In summary:

$$\pi_i(\mathbf{T}_{iw}, \mathbf{x}_{wj}) = \begin{bmatrix} f_{i,u} \frac{x_{ij}}{z_{ij}} + c_{i,u} \\ f_{i,v} \frac{y_{ij}}{z_{ij}} + c_{i,v} \end{bmatrix}$$

Juan D. Tardós

12

Feature-Based Visual SLAM

Some details

$$\{\mathbf{R}_{iw}, \mathbf{p}_{iw}, \mathbf{x}_{w}^{j} | \forall i, \forall j\}^{*} = \underset{\mathbf{R}, \mathbf{p}, \mathbf{x}}{\operatorname{argmin}} \sum_{i, j} \rho\left(\left\| \mathbf{u}_{ij} - \pi \left(\mathbf{R}_{iw} \mathbf{x}_{w}^{j} + \mathbf{p}_{iw} \right) \right\|_{\boldsymbol{\Sigma}_{ij}}^{2} \right)$$

- Assumption: the camera has been calibrated
 - Focal lengths and principal point are known
 - Distortion can be corrected
- $\rho_h()$ robust cost function (i.e. Huber cost) to downweight wrong matchings

• $\Sigma_{ij} = \sigma_{ij}^2 \mathbf{I}_{2 \times 2}$ std. dev. typically = 1 pixel * scale

Huber cost function

$$J_{H}(\theta) = \sum_{i=1}^{N} L_{H}(r^{(i)}, \delta) = \sum_{|r^{(i)}| \le \delta} r^{(i)^{2}/2} + \sum_{|r^{(i)}| > \delta} \delta |r^{(i)}| - \delta^{2}/2$$

Juan D. Tardós

Iniversidad

Zaragoza

Full Bundle Adjustment in Real Time?

$$\{\mathbf{R}_{iw}, \mathbf{p}_{iw}, \mathbf{x}_{w}^{j} | \forall i, \forall j\}^{*} = \underset{\mathbf{R}, \mathbf{p}, \mathbf{x}}{\operatorname{argmin}} \sum_{i, j} \rho\left(\left\| \mathbf{u}_{ij} - \pi \left(\mathbf{R}_{iw} \mathbf{x}_{w}^{j} + \mathbf{p}_{iw} \right) \right\|_{\boldsymbol{\Sigma}_{ij}}^{2} \right)$$

• The problem is sparse

- Not all cameras see all points!

- But still not feasible in real time

 example: 1k images and 100k points → 1s per LM iteration
- Local BA or sliding-window BA
- BA requires very good initial solutions

Structure of the SLAM problem

Maps with Thousands of Features?

Original SLAM problem

- EKF approach
 - Only keeps the last pose
 - $O(n^2)$ with the number of features
 - Limited to 200-300 features in real-time
 - Keyframe approach (PTAM)
 - Uses only a few keyframes for map estimation with non-linear optimization
 - Can handle thousands of points
 - Given the same computational effort is more precise than EKF-SLAM

Universidad

Zaragoza

Hauke Strasdat, J. M. M. Montiel, Andrew J. Davison, **Real-time Monocular SLAM:** Why Filter?. IEEE Int. Conf. Robotics and Automation, ICRA 2010.

BA + Keyframes, what else do I need?

- Which features will I use?
- How to match them?
- How to start when the map is empty?
- How to track the camera pose?
- How to add new points to the map?
- How to make it run in real time?
 - Which information to keep, what to throw away?
- What if objects or people move?
- What if I get lost?
- How to detect a loop?
- How to correct drift after a loop?

Local Features, Interest points, Keypoints

• Detector: find local maxima of a certain operator

original Image

Harris detector (corner-like) DoG detector (blob-like)

Descriptor: to recognize the feature in new images

Feature Requirements

- Repeatability
- Accuracy
- Invariance
 - Illumination
 - Position
 - In-plane rotation
 - Viewpoint
 - Scale
- Efficiency

Zaragoza

21

Corner detectors

• Harris Matrix or Moments Matrix:

$$A = \sum_{u} \sum_{v} w(u,v) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = \begin{bmatrix} \langle I_x^2 \rangle & \langle I_x I_y \rangle \\ \langle I_x I_y \rangle & \langle I_y^2 \rangle \end{bmatrix}$$

- $-I_x I_y$: Image gradients
- w: circular weights (uniform or Gaussian)
- < >: sum over the image patch (*u*,*v*), weighted with *w*
- Harris detector:

$$M_c = det \mathbf{A} - \alpha t r^2 \mathbf{A} = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2 \qquad \alpha = 0.04 \dots 0.15$$

• Shi-Tomasi detector:

$$M_c = \min(\lambda_1, \lambda_2)$$
 $(\lambda_1, \lambda_2) = eig(A)$

Good for Tracking using Correlation

RIGHT Image

Shi-Tomasi points

Predict position in next image (@15-30 Hz) Search by normalized correlation with a 11x11 patch

FAST corner detector

- Pixel p surrounded by n consecutive pixels all brighter (or darker) than p
- Much faster than other detectors

E Rosten, T Drummond , Machine learning for high-speed corner detection, European Conf. on Computer Vision 2006

Blob detector using LoG

- Gaussian Filter (scale t)
- Laplacian of Gaussian (LoG) $\nabla^2 L = L_{xx} + L_{yy}$
- Normalized LoG

0

2

4

-2

Feature detector:

$$(\hat{x},\hat{y};\hat{t}) = \operatorname{argmaxminlocal}_{(x,y;t)}(\nabla^2_{norm}L(x,y;t))$$

- Strong response for blobs of size \sqrt{t}

SIFT detector: Difference of Gaussians

• LoG ≈ Difference of Gaussians DoG:

$$\nabla^2 L(x,y;t) = \frac{1}{2\Delta t} \left(L(x,y;t+\Delta t) - L(x,y;t-\Delta t) \right)$$

Automatic scale selection

Fig. 3.5 Example of characteristic scales. The top row shows images taken with different zoom. The bottom row shows the responses of the Laplacian over scales for two corresponding points. The characteristic scales are 10.1 and 3.9 for the left and right images, respectively. The ratio of scales corresponds to the scale factor (2.5) between the two images. The radius of displayed regions in the top row is equal to 3 times the selected scales.

Juan D. Tardós

27

SIFT Descriptor

Histogram of 8 gradient orientations in 16 areas of 4x4 pixels around the detected keypoint

✤ 128 bytes (floats): 16 areas x 8 histogram bins

Binary descriptors: BRIEF

Computed around a FAST corner

BRIEF descriptor:

$$D_i(\mathbf{p}) = \begin{cases} 1 & \text{if } I(\mathbf{p} + \mathbf{x}_i) < I(\mathbf{p} + \mathbf{y}_i) \\ 0 & \text{otherwise} \end{cases}$$
$$\hookrightarrow D(\mathbf{p}) = [1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \dots]$$

- Binary string, 256 bits in length.
- It is not invariant to scale or rotation.

Popular Features for Visual SLAM

Detector	Descriptor	Rotation Invariant	Automatic Scale	Accuracy	Relocation & Loops	Efficiency
Harris	Patch	No	No	++++	-	++++
Shi-Tomasi	Patch	No	No	++++	-	++++
SIFT	SIFT	Yes	Yes	++	++++	+
SURF	SURF	Yes	Yes	++	++++	++
FAST	BRIEF	No	No	+++	+++	++++
ORB	ORB	Yes	No	+++	+++	++++

- ORB: Oriented FAST and Rotated Brief
 - 256-bit binary descriptor
 - Fast to extract and match (Hamming distance)
 - Good for tracking, relocation and Loop detection
 - Multi-scale detection \rightarrow same point appears on several scales

Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. ORB: an efficient alternative to SIFT or SURF, ICCV 2011

3. Feature Matching

- Compare descriptors
- Spurious matchings
- Search for consensus with a robust technique: RANSAC

The problem of spurious matchings

- Least-squares is very sensitive to spurious data
- A single spurious match may to ruin the estimation
- Leverage point:

 Removing the points with higher residuals DOES NOT SOLVE THE PROBLEM

RANSAC: RANdom SAmpling Consensus

- RANSAC (P) return M and S
- -- P: set of potential matches
- -- M: alignment model found (requires at least k matchings)
- -- S: set of supporting matches
- for i = 1..max_attempts
 - Si \leftarrow choose randomly k matchings from P
 - Mi ← compute alignment model from Si
 - $Si^{\star} \leftarrow$ matchings in P that agree with Mi $\,$ (with tolerance ϵ)
 - if #(Si*) > consensus_threshold
 - Mi^{*} ← compute alignment model from Si^{*} (using least squares) **return** Mi^{*} and Si^{*}

end if

endfor

return failure

Two View Model: Epipolar Constraint

- Vectors $\mathbf{t} = \mathbf{c}_1 \mathbf{c}_0$, $\mathbf{p} \mathbf{c}_0$, $\mathbf{p} \mathbf{c}_1$ must be coplanar
- Epipolar constraint:
 - Essential Matrix:

$$\mathbf{x}_{c1}^T \mathbf{E} \mathbf{x}_{c0} = \mathbf{0}$$

$$\mathbf{E} = \begin{bmatrix} \mathbf{t} \end{bmatrix}_{\mathbf{x}} \mathbf{R} = \begin{bmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{bmatrix} \mathbf{R}$$

Universidad

Zaragoza

•

Matching Problems

Problem	Inputs	Model to find	Basic Equation	d.o.f.	Min. # of matches	Minimal solution
Camera Location	$\mathbf{u}_{ij}, \mathbf{x}_{wj}$	Pose \mathbf{T}_{iw}	$\pi_i(\mathbf{T}_{iw},\mathbf{x}_{wj})$	6	3	рЗр
Initialize 3D scene	$\mathbf{u}_{1j},\mathbf{u}_{2j}$	Essential Matrix $\mathbf{E}_{12} = \left[\mathbf{t}\right]_{ imes} \mathbf{R}$	$\mathbf{u}_{1j}^T \mathbf{E}_{12} \mathbf{u}_{2j} = 0$	5	5	5-point 8-point
Initialize 2D scene	$\mathbf{u}_{1j},\mathbf{u}_{2j}$	Homography ${f H}_{12}$	$\mathbf{u}_{1j} = \mathbf{H}_{12}\mathbf{u}_{2j}$	8	4	

Matchings in 2 Frames \rightarrow 3D Points and Motion

SFM:

- 5pt algorithm
- 8pt algorithm

Unknown Scale!

4. Relocation and Loop closing

• Relocation problem:

During SLAM tracking can be lost: occlusions, low tecture, quick motions,...

➢ Re-acquire camera pose and continue

• Loop closing problem

SLAM is working, and you come back to a previously mapped area
Loop detection: to avoid map duplication
Loop correction: to compensate the accumulated drift

• In both cases you need a place recognition technique

Why is Loop Detection Difficult?

• Is this a loop closure?

Likely algorithm answer:

YES

YES

TRUE POSITIVE

Why is Loop Detection Difficult?

• Is this a loop closure?

Scene 1430

Scene 1244

Likely algorithm answer: **NO YES FALSE POSITIVE**

Perceptual aliasing is common in indoor scenarios

Bag of Words Approach

Scalable Recognition with a Vocabulary Tree

David Nistér, Henrik Stewénius CVPR 2006

Universidad Zaragoza

Examples with DBoW2 using ORB features

D. Gálvez-López, J.D. Tardós: *Bags of Binary Words for Fast Place Recognition in Image Sequences*, IEEE Trans. Robotics 28(5):1188-1197, 2012 (DBow2 software)

Loop Correction

- 7 Dof graph optimization, to correct scale drift
- And optionally Full BA (little improvement, much slower)

Outline

- 1. Feature-Based Visual SLAM
- 2. Features
- 3. Feature Matching
- 4. Relocation and Loop Closing
- 5. Putting all together: ORB-SLAM
- 6. ORB-SLAM2: Stereo and RGB-D
- 7. Visual-Inertial ORB-SLAM

ORB-SLAM: Feature-Based SLAM, 2015

- Use the same features for:
 - Tracking
 - Mapping
 - Loop closing
 - Relocation
- ORB: FAST corner + Oriented Rotated Brief descriptor
 - Binary descriptor
 - Very fast to compute and compare
- Real-time, large scale operation
- Survival of the fittest for points and keyframes

Raúl Mur-Artal, José M. M. Montiel and Juan D. Tardós , **ORB-SLAM: A Versatile and Accurate Monocular SLAM System**, IEEE Trans. on Robotics 31(5): 1147-1163, Oct 2015 (<u>software</u>)

Recent Key Ideas

Scale Drift-Aware Loop Closing

H. Strasdat, J.M.M. Montiel and A.J. Davison Scale Drift-Aware Large Scale Monocular SLAM RSS 2010

Covisibility Graph

H. Strasdat, A. J. Davison, J. M. M. Montiel , K. Konolige Double Window Optimization for Constant Time Visual SLAM ICCV 2011

Bags of Binary Words (DBoW)

D. Gálvez-López and J. D. Tardós Bags of Binary Words for Fast Place Recognition in Image Sequences, IEEE Transactions on Robotics 2012

Covisibility Graph and Essential Graph

 θ : number of common points

 $\theta_{min} = 15$

Used for Local BA

Juan D. Tardós

Used for Loop Correction

UNIVERSIDAD DE ZARAGOZA

UNIVERSIDAD DE ZARAGOZA

ORB-SLAM indoors: TUM RGB-D dataset

ORB-SLAM

Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós

{raulmur, josemari, tardos} @unizar.es

Instituto Universitario de Investigación en Ingeniería de Aragón Universidad Zaragoza

ORB-SLAM indoors: 2cm precision

ORBSLAM Robust Tracking

ORB-SLAM outdoors: Kitti Dataset

ORB-SLAM

Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós

{raulmur, josemari, tardos} @unizar.es

Instituto Universitario de Investigación en Ingeniería de Aragón Universidad Zaragoza

Trajectory and Map Obtained

Applications: AR for Medicine

AR View

Cooperation with:

Institut de Recherche Contre les Cancers de l'Appareil Digéstif, Strasbourg, France

ORB-SLAM Inside the Body

					DI ¥	🤶 Es 🖞 📣	17:21 🕻	¥
_AM/Frame	🖸 🖨 🕒 rviz.rviz* - RViz							
	الس Interact المجمع Move Camera	Select 🚸 Focus Cam	era 📼 Measure	💉 2D Pose Estimate	💉 2D Nav Goal	Publish Point	÷	»
Sirauqui@cirauqui-Aspire-V5-5	72PG: ~/workspace/Sequence	es						
ZED Bag Time: 1459456967 [PAUSED] Bag Time: 1459456967<	7.47486 Duration: 0.0 7.47486 Dura	000000 / 110.900 000000 / 110.900						4
	() Time	-						×
STRASBOURG France	ROS Time: 199270.55 ROS E	Elapsed: 46.31	Wall Time: 14653	99270.58 Wall Elap	osed: 46.31	Exp	erimental	
	Reset						30 fps	

ORB-SLAM Monocular

• With monocular scale is not observable

6. ORB-SLAM2: Stereo and RGB-D

Juan D. Tardós

Universidad

Zaragoza

ORB-SLAM2: Input pre-processing

ORB-SLAM2 is agnostic to the type of sensor

ORB-SLAM2: Monocular, Stereo and RGB-D

• Monocular:

$$\mathbf{x} = \pi_m \left(\mathbf{X}_{\mathsf{C}} \right) = \begin{bmatrix} f_x \frac{X}{Z} + c_x \\ f_y \frac{Y}{Z} + c_y \end{bmatrix}, \quad \mathbf{X}_{\mathsf{C}} = \begin{bmatrix} X, Y, Z \end{bmatrix}^T, \quad \mathbf{x} = \begin{bmatrix} u, v \end{bmatrix}^T$$

• Stereo:

$$\mathbf{x} = \pi_s \left(\mathbf{X}_{\mathsf{C}} \right) = \begin{bmatrix} f_x \frac{X}{Z} + c_x \\ f_y \frac{Y}{Z} + c_y \\ f_x \frac{X-b}{Z} + c_x \end{bmatrix}, \quad \mathbf{X}_{\mathsf{C}} = \begin{bmatrix} X, Y, Z \end{bmatrix}^T, \quad \mathbf{x} = \begin{bmatrix} u_L, v_L, u_R \end{bmatrix}^T$$

• **RGB-D**:
$$u_r = u - \frac{f_x b_{rgbd}}{d}$$

$$\theta = \{ \mathbf{X}^{\mathbf{j}}_{\mathbf{W}}, \mathbf{R}_{\mathbf{i}\mathbf{W}, \mathbf{i}}\mathbf{p}_{\mathbf{W}} \mid \forall j \in \mathcal{P}, \forall \mathbf{i} \in \mathcal{C} \}$$
$$\theta = \underset{\theta}{\operatorname{argmin}} \sum_{\mathbf{i}, j} \rho \left(\left\| \mathbf{x}^{j}_{\mathbf{i}} - \pi_{m} \left(\mathbf{R}_{\mathbf{i}\mathbf{W}} \mathbf{X}^{j}_{\mathbf{W}} + {}_{\mathbf{i}}\mathbf{p}_{\mathbf{W}} \right) \right\|_{\boldsymbol{\Sigma}^{\mathbf{j}}_{\mathbf{i}}}^{2} \right)$$

Close and Far Points

- Green points: depth <= 40 x baseline
 - Essential to compute camera translation
- Blue points: depth > 40 x baseline
 - Good to obtain camera orientation

Accuracy in the KITTI Dataset

	ORB-SLAM2 (Stereo)			Stereo LSD-SLAM			
Error	t_{rel}	r_{rel}	t_{abs}	t_{rel}	r_{abs}	t_{abs}	
(Units)	(%)	(deg/100m)	(m)	(%)	(deg/100m)	(m)	
00	0.70	0.25	1.3	0.63	0.26	1.0	
01	1.39	0.21	10.4	2.36	0.36	9.0	
02	0.76	0.23	5.7	0.79	0.23	2.6	
03	0.71	0.18	0.6	1.01	0.28	1.2	
04	0.48	0.13	0.2	0.38	0.31	0.2	
05	0.40	0.16	0.8	0.64	0.18	1.5	
06	0.51	0.15	0.8	0.71	0.18	1.3	
07	0.50	0.28	0.5	0.56	0.29	0.5	
08	1.05	0.32	3.6	1.11	0.31	3.9	
09	0.87	0.27	3.2	1.14	0.25	5.6	
10	0.60	0.27	1.0	0.72	0.33	1.5	

Juan D. Tardós

UNIVERSIDAD DE ZARAGOZA

Zaragoza

ÎĨĨ

ORB-SLAM2: Monocular, Stereo and RGB-D

Instituto Universitario de Investigación en Ingeniería de Aragón Universidad Zaragoza

ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras

Raúl Mur-Artal and Juan D. Tardós

raulmur@unizar.es

tardos@unizar.es

Dense Point Cloud Reconstruction

7. Visual-Inertial ORB-SLAM

 IMU measures angular velocity and linear acceleration in body reference B

$$\begin{aligned} \mathbf{R}_{\mathtt{WB}}^{k+1} &= \mathbf{R}_{\mathtt{WB}}^{k} \operatorname{Exp} \left(\left(\boldsymbol{\omega}_{\mathtt{B}}^{k} - \boldsymbol{b}_{g}^{k} \right) \Delta t \right) \\ _{\mathtt{W}} \mathbf{v}_{\mathtt{B}}^{k+1} &= _{\mathtt{W}} \mathbf{v}_{\mathtt{B}}^{k} + \mathbf{g}_{\mathtt{W}} \Delta t + \mathbf{R}_{\mathtt{WB}}^{k} \left(\boldsymbol{a}_{\mathtt{B}}^{k} - \boldsymbol{b}_{a}^{k} \right) \Delta t \\ _{\mathtt{W}} \mathbf{p}_{\mathtt{B}}^{k+1} &= _{\mathtt{W}} \mathbf{p}_{\mathtt{B}}^{k} + _{\mathtt{W}} \mathbf{v}_{\mathtt{B}}^{k} \Delta t + \frac{1}{2} \mathbf{g}_{\mathtt{W}} \Delta t^{2} + \frac{1}{2} \mathbf{R}_{\mathtt{WB}}^{k} \left(\boldsymbol{a}_{\mathtt{B}}^{k} - \boldsymbol{b}_{a}^{k} \right) \Delta t^{2} \end{aligned}$$

- Difficulties:
 - Measurement noise
 - Accelerometer and gyroscope biases
 - Direction of gravity unknown
 - Initial velocity unknown

Visual-Inertial ORB-SLAM: IMU Initialization

Goal: Gravity, IMU Biases, Velocities, Scale Divide and Conquer Solution

1. Run Monocular ORB-SLAM for 10-20s

Keyframe orientation and up-to-scale translation

2. Optimize Gyroscope Bias

Rotate accelerometer measurements

3. Estimate Gravity Vector (no Acc. Bias)

Initial seed for gravity direction

4. Optimize Gravity Direction, Acc. Bias and Scale

5. Compute Velocities

Juan D. Tardós

Visual-Inertial ORB-SLAM: Tracking

$$\begin{split} \mathbf{E}_{\mathrm{IMU}}(i,j) &= \rho \left(\left[\mathbf{e}_{R}^{T} \, \mathbf{e}_{v}^{T} \, \mathbf{e}_{p}^{T} \right] \boldsymbol{\Sigma}_{I} \left[\mathbf{e}_{R}^{T} \, \mathbf{e}_{v}^{T} \, \mathbf{e}_{p}^{T} \right]^{T} \right) + \rho \left(\mathbf{e}_{b}^{T} \boldsymbol{\Sigma}_{R} \mathbf{e}_{b} \right) \\ \mathbf{e}_{R} &= \mathrm{Log} \left(\left(\Delta \mathbf{R}_{ij} \mathrm{Exp} \left(\mathbf{J}_{\Delta R}^{g} \mathbf{b}_{g}^{j} \right) \right)^{T} \mathbf{R}_{\mathsf{BW}}^{i} \mathbf{R}_{\mathsf{WB}}^{j} \right) \\ \mathbf{e}_{v} &= \mathbf{R}_{\mathsf{BW}}^{i} \left(\mathbf{w} \mathbf{v}_{\mathsf{B}}^{j} - \mathbf{w} \mathbf{v}_{\mathsf{B}}^{i} - \mathbf{g}_{\mathsf{W}} \Delta t_{ij} \right) - \left(\Delta \mathbf{v}_{ij} + \mathbf{J}_{\Delta v}^{g} \mathbf{b}_{g}^{j} + \mathbf{J}_{\Delta v}^{a} \mathbf{b}_{a}^{j} \right) \\ \mathbf{e}_{p} &= \mathbf{R}_{\mathsf{BW}}^{i} \left(\mathbf{w} \mathbf{p}_{\mathsf{B}}^{j} - \mathbf{w} \mathbf{p}_{\mathsf{B}}^{i} - \mathbf{w} \mathbf{v}_{\mathsf{B}}^{i} \Delta t_{ij} - \frac{1}{2} \mathbf{g}_{\mathsf{W}} \Delta t_{ij}^{2} \right) - \left(\Delta \mathbf{p}_{ij} + \mathbf{J}_{\Delta p}^{g} \mathbf{b}_{g}^{j} + \mathbf{J}_{\Delta p}^{a} \mathbf{b}_{a}^{j} \right) \\ \mathbf{e}_{b} &= \mathbf{b}^{j} - \mathbf{b}^{i} \end{split}$$

Universidad Zaragoza

Visual-Inertial ORB-SLAM: Mapping

Local Bundle Adjustment

ORB-SLAM's Local BA

Visual-Inertial ORB-SLAM's Local BA

Visual-Inertial ORB-SLAM: Results

Instituto Universitario de Investigación en Ingeniería de Aragón Universidad Zaragoza

Zaragoza

Visual-Inertial Monocular SLAM with Map Reuse

Raúl Mur-Artal and Juan D. Tardós

Visual-Inertial ORB-SLAM

Sequence: V1_02_medium Dataset: EuRoC MAV Dataset

True scale (1% error) and centimeter precision

Juan D. Tardós

Results on EuRoC dataset

Visual-Inertial Odometry: Keeps accumulating drift

Visual-Inertial **ORB-SLAM**: Zero drift in mapped areas

Juan D. Tardós

78

idad

Zaragoza

Visual-Inertial ORB-SLAM: Results

TABLE I

EUROC DATASET. COMPARISON OF TRANSLATION RMSE (m).

Sequence	ORB-SLAM	ORB-SLAM	ORB-SLAM2	LSD-SLAM
	Monocular	Visual Inertial	Stereo	Stereo
	(with GT scale)			
V1_01_easy	0.015	0.027	0.035	0.066
V1_02_medium	0.020	0.028	0.020	0.074
V1_03_difficult	(X)	(X)	0.048	0.089
V2_01_easy	0.021	0.032	0.037	-
V2_02_medium	0.018	0.041	0.035	-
V2_03_difficult	X	0.074	X	-
MH_01_easy	0.071	0.075	0.035	-
MH_02_easy	0.067	0.084	0.018	-
MH_03_medium	0.071	0.087	0.028	-
MH_04_difficult	0.082	0.217	0.119	-
MH_05_difficult	0.060	0.082	0.060	-

Raúl Mur-Artal, Juan D. Tardós, ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo and RGB-D cameras, IEEE Trans. on Robotics, Oct. 2017

Juan D. Tardós

79

Summary

- Monocular: excellent accuracy, but scale?
- Stereo: excellent accuracy and robustness
- Tightly-coupled Visual-Inertial SLAM – Recovers the true scale within 1% of error
- SLAM allows loop closing and map reuse
 More accurate than Visual Odometry

- Future work:
 - -Visual-inertial stereo SLAM
 - Direct SLAM

Deformable SLAM

Juan D. Tardós

More Information

- Raúl Mur-Artal, J.M.M. Montiel and Juan D. Tardós ORB-SLAM: A Versatile and Accurate Monocular SLAM System, IEEE Trans. Robotics 31(5): 1147-1163, Oct. 2015.
- Raúl Mur-Artal, and Juan D. Tardós. ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras IEEE Trans. Robotics 33(5): 1255-1262, Oct. 2017
- Raúl Mur-Artal, and Juan D. Tardós.
 Visual-Inertial Monocular SLAM with Map Reuse
 IEEE Robotics and Automation Letters 2(2): 798-803, Jan 2017
- Carlos Campos, José M. M. Montiel, Juan D. Tardós Fast and Robust Initialization for Visual-Inertial SLAM IEEE Int. Conf. Robotics and Automation, May 2019
- https://github.com/uz-slamlab

https://github.com/uz-slamlab

ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras

Raúl Mur-Artal and Juan D. Tardós raulmur@unizar.es tardos@unizar.es

