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SLAM: Simultaneous Localization and Mapping 
 
 
The SLAM problem: 

•  a robot moving in an 
unknown environment 

 
Use sensor data to: 

•  build a map of the 
environment 

•  and at the same time 
•  use the map to compute 

the robot location (image: Paul Newman) P. Newman, J.J Leonard, J.D. Tardos, J. Neira:  
Explore and return: Experimental validation of 
real-time concurrent mapping and localization.  
IEEE Int. Conf. Robotics and Automation, 2002 
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ORB-SLAM: Visual SLAM, 2015 
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•  Robot Navigation based on ORB-SLAM2 

 
•  ORB-SLAM2 on mobile devices 

Applications: Robotics and 3D Modelling 
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Applications: AR/VR 
•  Obtain in real time the camera trajectory 
•  And build a map of the environment 
•  To add virtual elements to the environment 
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Applications: AR/VR 

Oculus Rift 
Facebook 

Gear VR 
Samsung 

Meta 2 
Metavision 

Hololens 
Microsoft 

 
 

¡ SLAM: User positional tracking 
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Outline 

1.  Feature-Based Visual SLAM 
2.  Features 
3.  Feature Matching 
4.  Relocation and Loop Closing 
5.  Putting all together: ORB-SLAM 
6.  ORB-SLAM2: Stereo and RGB-D 
7.  Visual-Inertial ORB-SLAM 
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1. Feature-Based Visual SLAM 

Reprojection error Projection Function 

Coordinates of point  j 

Pose of camera  i 

Observation of point  j 
from camera  i   

States 

Measurements 
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Projection of point j on camera i  (1) 

Rotation matrix 

Translation vector 

Coordinates of point  j  w.r.t. camera  i 



12 Juan D. Tardós 

Projection of point j on camera i  (2) 
 

Optical  
Axis 

Camera i 

x 
y 

z 

x 

y z 
W 

World 
Reference  T iw 

x 
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Image Plane  

u 

v 

 
 

horizontal focal  
length (pixels) 

focal  length (mm) 

principal point 

•  In summary: 
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Bundle Adjustment 

Reprojection error 

States 

Coordinates of point j 
 
Orientation of camera i 
 
Position of camera i 

Observation of point  j 
from camera  i   

Measurements 

Feature-Based Visual SLAM 



14 Juan D. Tardós 

Some details 

•  Assumption: the camera has been calibrated 
–  Focal lengths and principal point are known 
– Distortion can be corrected 

•            robust cost function (i.e. Huber cost) to 
downweight wrong matchings 

•                              std. dev. typically = 1 pixel * scale 
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Huber cost function 
•  L2 cost (quadratic) 

•  L1 cost (absolute value) 

•  Huber cost:       -4 -3 -2 -1 0 1 2 3 4
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Full Bundle Adjustment in Real Time? 

•  The problem is sparse 
– Not all cameras see all points! 

•  But still not feasible in real time 
–  example: 1k images and 100k points à 1s per LM iteration 

•  Local BA or sliding-window BA 

•  BA requires very good initial solutions 
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Structure of the SLAM problem 

x1 x2 

f1 f2 f3 

x3 x4 

f4 f5 

z11 

u1 

z12 z13 z35 z34 z33 z32 z23 z22 z21 z14 z45 z44 z43 

u2 u3 

Vehicle 

Environment 
features 

Odometry 

Observations 
Bayesian  
Network 

x1 x2 

f1 f2 f3 

x3 x4 

f4 f5 

Markov  
Random Field  

Map 
variables 

Vehicle 
variables 

•  The problem size grows with time 
•  The set of relationships is sparse 

SLAM Problem 
p(x1:k , f1:n | z1:k , u1:k ) 
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Maps with Thousands of Features? 
•  Original SLAM problem 
 
 
•  EKF approach 

–  Only keeps the last pose 
–  O(n2) with the number of features 
–  Limited to 200-300 features in real-time 

•  Keyframe approach (PTAM) 
–  Uses only a few keyframes for map 

estimation with non-linear optimization 
–  Can handle thousands of points 
–  Given the same computational effort is 

more precise than EKF-SLAM 

x1 x2 

f1 f2 f3 

x3 x4 

f4 f5 

x1 x2 

f1 f2 f3 

x3 x4 

f4 f5 

x1 x2 

f1 f2 f3 

x3 x4 

f4 f5 

Hauke Strasdat, J. M. M. Montiel, Andrew J. Davison, Real-time Monocular SLAM: 
Why Filter?. IEEE Int. Conf. Robotics and Automation, ICRA 2010. 
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BA + Keyframes, what else do I need? 
•  Which features will I use? 
•  How to match them? 
•  How to start when the map is empty? 
•  How to track the camera pose? 
•  How to add new points to the map? 
•  How to make it run in real time? 

– Which information to keep, what to throw away? 

•  What if objects or people move? 
•  What if I get lost? 
•  How to detect a loop? 
•  How to correct drift after a loop? 
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2. Features 
Local Features, Interest points, Keypoints 

•  Detector: find local maxima of a certain operator 

•  Descriptor: to recognize the feature in new images 

Harris detector 
(corner-like) 

DoG detector 
(blob-like) 

original Image 
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Feature Requirements 
•  Repeatability 
•  Accuracy 
•  Invariance 

–  Illumination 
–  Position 
–  In-plane rotation 
–  Viewpoint 
–  Scale 

•  Efficiency 
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Corner detectors 
•  Harris Matrix or Moments Matrix: 

 
–  Ix Iy: Image gradients 
– w: circular weights (uniform or Gaussian) 
–  < >:  sum over the image patch (u,v), weighted with w 

•  Harris detector: 
 
•  Shi-Tomasi detector: 
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 Shi-Tomasi points 
 Predict position in next image (@15-30 Hz) 
 Search by normalized correlation with a 11x11 patch 

Good for Tracking using Correlation 
RIGHT Image 

50 100 150 200 250 300 

50 

100 

150 

200 
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FAST corner detector 

 

–  Pixel p surrounded by n consecutive pixels all brighter (or darker) 
than p 

– Much faster than other detectors 

E Rosten, T Drummond , Machine learning for high-speed corner detection, 
European Conf. on Computer Vision 2006 
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Blob detector using LoG 
•  Gaussian Filter (scale t) 
•  Laplacian of Gaussian (LoG) 
•  Normalized LoG 

 
 

•  Feature detector: 

–  Strong response for blobs of size  

t =1 

-2 

-1.5 

-1 

-0.5 

0 

0.5 

-4 -2 0 2 4 
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SIFT detector: Difference of Gaussians 
•  LoG ≈ Difference of Gaussians DoG: 
 

  

                                                                                                                                         .  

Search for maxima in 
space and scale 
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Automatic scale selection 
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SIFT Descriptor 
¡ Histogram of 8 gradient orientations in 16 areas of 4x4 

pixels around the detected keypoint 

ö  128 bytes (floats): 16 areas x 8 histogram bins 
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Binary descriptors: BRIEF 
•  Computed around a FAST corner 
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Popular Features for Visual SLAM 

•  ORB: Oriented FAST and Rotated Brief 
–  256-bit binary descriptor 
–  Fast to extract and match (Hamming distance) 
–  Good for tracking, relocation and Loop detection 
–  Multi-scale detection à same point appears on several scales 

 
 

Detector Descriptor Rotation 
Invariant 

Automatic
Scale 

Accuracy Relocation 
& Loops 

Efficiency 

Harris Patch No No ++++ - ++++ 

Shi-Tomasi Patch No No ++++ - ++++ 

SIFT SIFT Yes Yes ++ ++++ + 

SURF SURF Yes Yes ++ ++++ ++ 

FAST BRIEF No No +++ +++ ++++ 

ORB ORB Yes No +++ +++ ++++ 

Rublee, E., Rabaud, V., Konolige, K., & Bradski, G.  
ORB: an efficient alternative to SIFT or SURF,  ICCV 2011 
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3. Feature Matching 

•  Compare descriptors 
•  Spurious matchings 
•  Search for consensus with a robust technique: RANSAC 
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The problem of spurious matchings 
•  Least-squares is very sensitive to spurious data 
•  A single spurious match may to ruin the estimation 
•  Leverage point: 
 
 
 
 
 

– Removing the points with higher residuals DOES NOT SOLVE 
THE PROBLEM 
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RANSAC: RANdom SAmpling Consensus 
RANSAC (P) return M and S 
-- P: set of potential matches 
-- M: alignment model found (requires at least k matchings) 
-- S: set of supporting matches 
for i = 1..max_attempts 

Si ß choose randomly k matchings from P 
Mi ß compute alignment model from Si 
Si* ß matchings in P that agree with Mi  (with tolerance ε ) 
if  #(Si*) > consensus_threshold 

 Mi* ß compute alignment model from Si*  (using least squares) 
 return Mi* and Si* 

end if 
endfor 
return failure 
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•  Vectors   t = c1 – c0 ,  p - c0 , p – c1  must be coplanar 

•  Epipolar constraint: 

•  Essential Matrix:  
 

Two View Model: Epipolar Constraint 
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Matching Problems 

Problem Inputs Model to find Basic 
Equation 

d.o.f. Min. # of 
matches 

Minimal 
solution 

Camera 
Location 

Pose 
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3 

 
p3p  

Initialize 
3D scene 

Essential Matrix 
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5 

 
5-point 
8-point 

Initialize 
2D scene 

Homography 
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Matchings in 2 Frames à 3D Points and Motion  

Unknown Scale! 

SFM: 
•  5pt algorithm 
•  8pt algorithm  
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4. Relocation and Loop closing 
•  Relocation problem:  

During SLAM tracking can be lost: occlusions, low tecture, quick 
motions,… 
Ø Re-acquire camera pose and continue 

•  Loop closing problem 
SLAM is working, and you come back to a previously mapped area 
Ø Loop detection: to avoid map duplication 
Ø Loop correction: to compensate the accumulated drift 

•  In both cases you need a place recognition technique 
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Why is Loop Detection Difficult? 
•  Is this a loop closure? 

YES TRUE POSITIVE 
Likely algorithm answer: 

YES 
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Why is Loop Detection Difficult? 
•  Is this a loop closure? 

YES FALSE POSITIVE 
Likely algorithm answer: 

NO 
Perceptual aliasing is common in indoor scenarios 
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Bag of Words Approach 

Binary Features 
BRIEF, ORB 

Inverse Index 
Direct Index 
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Scalable Recognition with a Vocabulary Tree 

David Nistér, Henrik Stewénius 
CVPR 2006 
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Vocabulary Tree 
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Examples with DBoW2 using ORB features 

D. Gálvez-López, J.D. Tardós: Bags of Binary Words for Fast Place Recognition in 
Image Sequences, IEEE Trans. Robotics 28(5):1188-1197, 2012 (DBow2 software) 
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Loop Correction 

 
•  7 Dof graph optimization, to correct scale drift 
•  And optionally Full BA (little improvement, much slower) 



46 Juan D. Tardós 

Outline 

1.  Feature-Based Visual SLAM 
2.  Features 
3.  Feature Matching 
4.  Relocation and Loop Closing 
5.  Putting all together: ORB-SLAM 
6.  ORB-SLAM2: Stereo and RGB-D 
7.  Visual-Inertial ORB-SLAM 
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ORB-SLAM: Feature-Based SLAM, 2015 
•  Use the same features for: 

–  Tracking 
– Mapping 
–  Loop closing 
– Relocation 

•  ORB: FAST corner + Oriented Rotated Brief descriptor 
–  Binary descriptor 
–  Very fast to compute and compare 

•  Real-time, large scale operation 
•  Survival of the fittest for points and keyframes  

Raúl Mur-Artal, José M. M. Montiel and Juan D. Tardós ,  
ORB-SLAM: A Versatile and Accurate Monocular SLAM System,   
IEEE Trans. on Robotics  31(5): 1147-1163, Oct 2015 (software) 
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Recent Key Ideas 
•  Scale Drift-Aware Loop Closing 

H. Strasdat, J.M.M. Montiel and A.J. Davison 
Scale Drift-Aware Large Scale Monocular SLAM 
RSS 2010 

•  Covisibility Graph 
H. Strasdat, A. J. Davison, J. M. M. Montiel , K. Konolige 
Double Window Optimization for Constant Time Visual SLAM 
ICCV 2011 

•  Bags of Binary Words (DBoW) 
D. Gálvez-López and J. D. Tardós 
Bags of Binary Words for Fast Place Recognition in  
Image Sequences, IEEE Transactions on Robotics 2012 
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Covisibility Graph and Essential Graph 
θ: number of common points 

θmin = 15 θmin = 100 

Used for Local BA Used for Loop Correction 
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ORB-SLAM: Real-Time Monocular SLAM 
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ORB-SLAM: Real-Time Monocular SLAM 
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ORB-SLAM: Real-Time Monocular SLAM 
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ORB-SLAM: Real-Time Monocular SLAM 
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ORB-SLAM: Real-Time Monocular SLAM 
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ORB-SLAM: Real-Time Monocular SLAM 
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ORB-SLAM: Real-Time Monocular SLAM 
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ORB-SLAM indoors: TUM RGB-D dataset 
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ORB-SLAM indoors: 2cm precision 
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ORBSLAM Robust Tracking 
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ORB-SLAM outdoors: Kitti Dataset 
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Trajectory and Map Obtained 
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ORB-SLAM: Kitti Dataset 
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Applications: AR for Medicine 

Cooperation with: Institut de Recherche Contre les  
Cancers de l’Appareil Digéstif,  

Strasbourg, France 
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ORB-SLAM Inside the Body 
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Scale drift! Ground Truth 
Estimation 

KITTI 08 

ORB-SLAM Monocular 
•  With monocular scale is not observable 
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6. ORB-SLAM2: Stereo and RGB-D 

  

(a) System Threads and Modules.

(b) Input pre-processing

Figure 6.1: ORB-SLAM2 system overview. The tracking thread pre-process the stereo or
RGB-D input so that the rest of the system operates independently of the input sensor.
Although it is not shown in this figure, ORB-SLAM2 also works with a monocular input as
described in Chapter 4.

to manage the local map and optimize it, performing local BA, 3) the Loop Closing to detect
large loops and correct the accumulated drift by performing a pose-graph optimization. This
thread launches a fourth thread to perform full BA after the pose-graph optimization, to
compute the optimal structure and motion solution.

The system has embedded a Place Recognition module based on DBoW2 [15] for relo-
calization, in case of tracking failure (e.g. an occlusion) or for reinitialization in an already
mapped scene, and for loop detection. The system maintains a covisibiliy graph [39] that

80
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ORB-SLAM2: Input pre-processing 

 
•  ORB-SLAM2 is agnostic to the type of sensor 

(a) System Threads and Modules.

(b) Input pre-processing

Figure 6.1: ORB-SLAM2 system overview. The tracking thread pre-process the stereo or
RGB-D input so that the rest of the system operates independently of the input sensor.
Although it is not shown in this figure, ORB-SLAM2 also works with a monocular input as
described in Chapter 4.

to manage the local map and optimize it, performing local BA, 3) the Loop Closing to detect
large loops and correct the accumulated drift by performing a pose-graph optimization. This
thread launches a fourth thread to perform full BA after the pose-graph optimization, to
compute the optimal structure and motion solution.

The system has embedded a Place Recognition module based on DBoW2 [15] for relo-
calization, in case of tracking failure (e.g. an occlusion) or for reinitialization in an already
mapped scene, and for loop detection. The system maintains a covisibiliy graph [39] that

80
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ORB-SLAM2: Monocular, Stereo and RGB-D 

the left image lies on the same row in the right image. The projection function for a rectified
stereo camera ⇡s : R3 ! R3 is defined as follows:

x = ⇡s (XC) =

2

664

fx
X
Z
+ cx

fy
Y
Z
+ cy

fx
X�b
Z

+ cx

3

775 , XC = [X, Y, Z]T , x = [uL, vL, uR]
T (1.2)

where (uL, vL) are the coordinates in the left image and uR is the horizontal coordinate in
the right image. The vertical coordinates in both image are the same, vR = vL.

1.2.3 RGB-D Camera

RGB-D cameras are the combination of a monocular RGB camera and a depth sensor, based
on structured light or time of flight. By knowing the intrinsic calibration of the camera
and extrinsic calibration between the camera and depth sensor, the measured depth can be
registered into a depth map with 1:1 pixel correspondences to the RGB image. That implies
that for every pixel in the image we know its depth without needing to perform a stereo
matching as in the case of the stereo camera. However due to the nature of the depth sensor
their use is restricted to indoors and there is a limited depth range.

1.2.4 Inertial Measurement Unit

Inertial Measurement Units (IMU) are proprioceptive sensors composed of a gyroscope that
measures the angular velocity, and an accelerometer that measures the linear acceleration
of the sensor. While vision measures the external world, an IMU provides information of
self-motion, which makes both sensors complementary. IMU can be used to estimate the
motion between camera frames or to estimate the metric scale of monocular SLAM. Gravity
can also be estimated which makes absolute pitch and yaw observable.

The IMU, whose reference we denote with B, measures the acceleration aB and angular
velocity !B of the sensor at regular intervals �t, typically at hundreds of Herzs. Both
measurements are a↵ected, in addition to sensor noise, by slowly varying biases ba and bg

of the accelerometer and gyroscope respectively. Moreover the accelerometer is subject to
gravity gW and one needs to subtract its e↵ect to compute the motion. The discrete evolution
of the IMU orientation RWB 2 SO(3), position WpB and velocity WvB, in the world reference W,
can be computed as follows [6]:

Rk+1

WB = Rk
WB Exp

��
!k

B � bkg
�
�t

�

Wv
k+1

B = Wv
k
B + gW�t+Rk

WB

�
ak
B � bka

�
�t

Wp
k+1

B = Wp
k
B + Wv

k
B�t+

1

2
gW�t2 +

1

2
Rk

WB

�
ak
B � bka

�
�t2

(1.3)

In order to fuse IMU and vision, both sensors should ideally be hardware synchronized
so measurements from both sensors are timestamped with the same clock and without drift.
Moreover both sensor has to be extrinsically calibrated to know the transformation TCB =
[RCB|CpB] between the reference of the camera and the IMU sensor [7].
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1.2.1 Monocular Camera

Monocular cameras are mainly composed of the image sensor and lens. We assume that the
camera can be accurately modeled as a pinhole camera [1], once lens distortion has been
removed, so that a 3D point XC 2 R3 in camera coordinate system reference C is projected
into 2D pixel coordinates x with the projection function ⇡m : R3 ! R2:

x = ⇡m (XC) =

"
fx

X
Z
+ cx

fy
Y
Z
+ cy

#
, XC = [X, Y, Z]T , x = [u, v]T (1.1)

where fx and fy are the horizontal and vertical focal length, and cx and cy the horizontal and
vertical coordinates of the principal point. These are intrinsic calibration parameters that
can be computed from several images of a known calibration pattern. The projection function
⇡ assumes no distortion introduced by the lens. In practice distortion e↵ects exist and have
to be modelled so that one can transform from distorted to undistorted coordinates. Well
known software and libraries likeMatlab or OpenCV include toolboxes for camera calibration,
including distortion. In this thesis we focus on cameras having a field of view (FOV) up
to ⇠ 100�, for omnidirectional cameras and fisheye with very wide FOV, there exist more
sophisticated mathematical models [2]. The projection function (1.1) also assumes the image
is captured with global shutter, that is the whole image is captured at the same instant.
Global shutter cameras are common in industry and those especially designed for computer
vision, but consumer cameras are typically rolling shutter cameras, where either pixel rows
or columns are captured at di↵erent time instants. Rolling shutter cameras produce artifacts
when the camera or elements in the scene are moving, and reduce the accuracy of Visual
SLAM if not properly modeled. Modeling rolling shutter e↵ect is out of the scope of this
thesis, and we refer the reader to recent works as [3] or [4].

Monocular cameras cannot observe the true scale of the world, and therefore monocular
SLAM can only estimate the map and camera trajectory up to scale. In addition scale can
drift and make distant portions of the map to be at di↵erent scales. Additional sources of
information like IMU or known distances in the map are required to scale the solution.

1.2.2 Stereo Camera

Stereo cameras are composed of two rigidly attached cameras. Ideally both cameras are
hardware synchronized so that image capturing is triggered at the same time. Depth can
be estimated from just one stereo frame by finding correspondences between left and right
pixels. To this end, in addition to intrinsic calibration of both cameras, the rotation and
translation between both cameras has to be calibrated by processing several stereo frames
of a calibration pattern. OpenCV also has a module for stereo calibration. The distance
between both cameras, known as the baseline b, along with focal length and image resolution
will determine the depth range at which depth estimation is accurate. As a rule of thumb
depth can be accurately estimated if it is less than 40 times the baseline [5]. In order to
facilitate stereo matching, images are typically rectified, removing distortion and rotating
them so that the epipolar lines are horizontal or vertical, i.e. the correspondence of a pixel in
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1.3 Solving Visual SLAM

Given a stream of images by a vision sensor the question is how to exploit its information to
perform Visual SLAM. There are two main approaches: feature-based and direct methods.

1.3.1 Feature-based Methods and Bundle Adjustment

Feature-based methods process the images to extract distinctive interest points (keypoints)
that can be reliably and repeatedly detected in images of the same scene ideally under dif-
ferent viewpoints and illumination conditions. A descriptor, typically a vector of binary or
real values of a certain length, is computed for each keypoint by operating on a patch of
pixels around the keypoint. This allows to match keypoints across images just by comparing
their descriptors. The combination of a keypoint and its descriptor is called a feature. Once
features have been extracted, the image can be discarded as feature-based methods only op-
erate on these features. The advantage is that features are geometric entities that are easy
to match and manipulate to compute initial solutions for geometry problems that are impor-
tant in Visual SLAM, like triangulation, epipolar geometry, the Perspective-n-Point (PnP)
problem, and rigid body or similarity transformation between reference systems. Moreover
feature-based optimizations are based on minimizing the reprojection error which is a geo-
metric error with good convergence properties. Given a correspondence between a 3D point
in world coordinates XW and a 2D keypoint xC in a monocular camera with orientation
RCW 2 SO(3) and position CpW, the reprojection error eproj is computed as follows:

eproj = xC � ⇡m (RCWXW + CpW) (1.4)

The optimization of the positions of a set of points P and the poses of a set of cameras
C, minimizing the reprojection error, is called Bundle Adjustment (BA) [8] and it is the core
optimization performed in modern feature-based visual SLAM:

✓ = {Xj

W,RiW, ipW | 8j 2 P , 8i 2 C}

✓ = argmin
✓

X

i,j

⇢
⇣��xj

i � ⇡m

�
RiWX

j
W + ipW

���2

⌃

j
i

⌘
(1.5)

where xj
i is the keypoint associated to 3D point Xj

W in camera i, ⌃j

i is the covariance of the
location of keypoint xj

i on the image of camera i, k·k
⌃

is the mahalanobis distance, and ⇢ is
a robust cost function to downweight outlier correspondences.

The main limitation of these approaches is precisely that they can only exploit visual
information where features, typically corners, can be extracted. Lack of texture and blur can
make a feature-based method to fail or perform very poorly. In addition the map generated
by a feature-based approach is a sparse point cloud with little use for other robotic tasks
other than localization.
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•  Monocular: 

 
•  Stereo: 

•  RGB-D: 

•  BA: 

links any two keyframes observing common points and a minimum spanning tree connecting
all keyframes. These graph structures allow to retrieve local windows of keyframes, so that
Tracking and Local Mapping operate locally, allowing to work on large environments, and
serve as structure for the pose-graph optimization performed when closing a loop.

The system uses the same ORB features [16] for tracking, mapping and place recognition
tasks. These features are robust to rotation and scale and present a good invariance to camera
auto-gain and auto-exposure, and illumination changes. Moreover they are fast to extract
and match allowing for real-time operation and show good precision/recall performance in
bag-of-word place recognition, as shown in Chapter 3.

In the rest of this section we present how stereo/depth information is exploited and which
elements of the system are a↵ected.

6.1.1 Monocular, Close Stereo and Far Stereo Keypoints

ORB-SLAM2 as a feature-based method preprocess the input to extract features at salient
keypoint locations, as shown in Fig. 6.1b. The input images are then discarded and all
system operations are based on these features, so that the system is independent on the
sensor being stereo or RGB-D. Our system handles monocular and stereo keypoints, which
are further classified as close or far.

Stereo keypoints are defined by three coordinates x
s

= (uL, vL, uR), being (uL, vL) the
coordinates on the left image and uR the horizontal coordinate in the right image. For stereo
cameras, we extract ORB in both images and for every left ORB we search for a match in
the right image. This can be done very e�ciently assuming stereo rectified images, so that
epipolar lines are horizontal. We then generate the stereo keypoint with the coordinates of
the left ORB and the horizontal coordinate of the right match, which is subpixel refined
by patch correlation. For RGB-D cameras, we extract ORB features on the image channel
and, as proposed by Strasdat et al. [39], we synthesize a right coordinate ur for each feature,
using the associated depth value d in the registered depth map channel, and the baseline
brgbd between the structured light projector and the infrared camera, which for Kinect and
Asus Xtion cameras we approximate to 8cm:

ur = u� fxbrgbd
d

(6.1)

where u is the undistorted horizonatal coordinate of the keypoint in the image and fx is the
horizontal focal length.

A stereo keypoint is classified as close if its associated depth is less than 40 times the
stereo/RGB-D baseline, as suggested in [5], otherwise it is classified as far. Close keypoints
can be safely triangulated from one frame as depth is accurately estimated and provide scale,
translation and rotation information. On the other hand far points provide accurate rotation
information but weaker scale and translation information. We triangulate far points when
they are supported by multiple views.

Monocular keypoints are defined by two coordinates x
m

= (uL, vL) on the left image
and correspond to all those ORB for which a stereo match could not be found or that have
an invalid depth value in the RGB-D case. These points are only triangulated from multiple
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Close and Far Points 

Figure 6.2: Tracked points in a highway. Green points have a depth less than 40 times the
stereo baseline, while blue points are further away. In this kind of sequences it is important to
insert keyframes often enough so that the amount of close points allows for accurate transla-
tion estimation. Far points contribute to estimate orientation but provide weak information
for translation and scale.

and the geometric validation and pose-graph optimization no longer require dealing with scale
drift and are based on rigid body transformations instead of similarities.

In ORB-SLAM2 we have incorporated a full BA optimization after the pose-graph to
achieve the optimal solution. This optimization might be very costly and therefore we perform
it in a separate thread, allowing the system to continue creating map and detecting loops.
However this brings the challenge of merging the bundle adjustment output with the current
state of the map. If a new loop is detected while the optimization is running, we abort
the optimization and proceed to close the loop, which will launch the full BA optimization
again. When the full BA finishes, we need to merge the updated subset of keyframes and
points optimized by the full BA, with the non-updated keyframes and points that where
inserted while the optimization was running. This is done by propagating the correction of
updated keyframes (i.e. the transformation from the non-optimized to the optimized pose)
to non-updated keyframes through the spanning tree. Non-updated points are transformed
according to the correction applied to their reference keyframe.

6.1.5 Keyframe Insertion

ORB-SLAM2 follows the policy introduced in monocular ORB-SLAM of inserting keyframes
very often and culling redundant ones afterwards. The distinction between close and far
stereo points allows us to introduce a new condition for keyframe insertion, which can be
critical in challenging environments where a big part of the scene is far from the stereo sensor,
as shown in Fig. 6.2. In such environment we need to have a su�cient amount of close points
to accurately estimate translation, therefore if the number of tracked close points drops below
⌧t and the frame could create at least ⌧c new close stereo points, the system will insert a new
keyframe. We empirically found that ⌧t = 100 and ⌧c = 70 works well in all our experiments.
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•  Green points: depth <= 40 x baseline 
–  Essential to compute camera translation 

•  Blue points: depth  > 40 x baseline 
– Good to obtain camera orientation 
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Accuracy in the KITTI Dataset Table 6.1: Comparison of accuracy in the KITTI Dataset.

ORB-SLAM2 (Stereo) Stereo LSD-SLAM
Error trel rrel tabs trel rabs tabs
(Units) (%) (deg/100m) (m) (%) (deg/100m) (m)

00 0.70 0.25 1.3 0.63 0.26 1.0
01 1.39 0.21 10.4 2.36 0.36 9.0
02 0.76 0.23 5.7 0.79 0.23 2.6
03 0.71 0.18 0.6 1.01 0.28 1.2
04 0.48 0.13 0.2 0.38 0.31 0.2
05 0.40 0.16 0.8 0.64 0.18 1.5
06 0.51 0.15 0.8 0.71 0.18 1.3
07 0.50 0.28 0.5 0.56 0.29 0.5
08 1.05 0.32 3.6 1.11 0.31 3.9
09 0.87 0.27 3.2 1.14 0.25 5.6
10 0.60 0.27 1.0 0.72 0.33 1.5

Figure 6.3: Estimated trajectory (black) and ground-truth (red) in KITTI 01, 05, 07 and 08.
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ORB-SLAM2: Monocular, Stereo and RGB-D 
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Dense Point Cloud Reconstruction 
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7. Visual-Inertial ORB-SLAM 

the left image lies on the same row in the right image. The projection function for a rectified
stereo camera ⇡s : R3 ! R3 is defined as follows:

x = ⇡s (XC) =

2

664

fx
X
Z
+ cx

fy
Y
Z
+ cy

fx
X�b
Z

+ cx

3

775 , XC = [X, Y, Z]T , x = [uL, vL, uR]
T (1.2)

where (uL, vL) are the coordinates in the left image and uR is the horizontal coordinate in
the right image. The vertical coordinates in both image are the same, vR = vL.

1.2.3 RGB-D Camera

RGB-D cameras are the combination of a monocular RGB camera and a depth sensor, based
on structured light or time of flight. By knowing the intrinsic calibration of the camera
and extrinsic calibration between the camera and depth sensor, the measured depth can be
registered into a depth map with 1:1 pixel correspondences to the RGB image. That implies
that for every pixel in the image we know its depth without needing to perform a stereo
matching as in the case of the stereo camera. However due to the nature of the depth sensor
their use is restricted to indoors and there is a limited depth range.

1.2.4 Inertial Measurement Unit

Inertial Measurement Units (IMU) are proprioceptive sensors composed of a gyroscope that
measures the angular velocity, and an accelerometer that measures the linear acceleration
of the sensor. While vision measures the external world, an IMU provides information of
self-motion, which makes both sensors complementary. IMU can be used to estimate the
motion between camera frames or to estimate the metric scale of monocular SLAM. Gravity
can also be estimated which makes absolute pitch and yaw observable.

The IMU, whose reference we denote with B, measures the acceleration aB and angular
velocity !B of the sensor at regular intervals �t, typically at hundreds of Herzs. Both
measurements are a↵ected, in addition to sensor noise, by slowly varying biases ba and bg

of the accelerometer and gyroscope respectively. Moreover the accelerometer is subject to
gravity gW and one needs to subtract its e↵ect to compute the motion. The discrete evolution
of the IMU orientation RWB 2 SO(3), position WpB and velocity WvB, in the world reference W,
can be computed as follows [6]:

Rk+1

WB = Rk
WB Exp

��
!k

B � bkg
�
�t

�

Wv
k+1

B = Wv
k
B + gW�t+Rk

WB

�
ak
B � bka

�
�t

Wp
k+1

B = Wp
k
B + Wv

k
B�t+

1

2
gW�t2 +

1

2
Rk

WB

�
ak
B � bka

�
�t2

(1.3)

In order to fuse IMU and vision, both sensors should ideally be hardware synchronized
so measurements from both sensors are timestamped with the same clock and without drift.
Moreover both sensor has to be extrinsically calibrated to know the transformation TCB =
[RCB|CpB] between the reference of the camera and the IMU sensor [7].

13

•  IMU measures angular velocity and linear acceleration in 
body reference B 

•  Difficulties: 
– Measurement noise 
–  Accelerometer and gyroscope biases 
– Direction of gravity unknown 
–  Initial velocity unknown 



74 Juan D. Tardós 

Goal: Gravity, IMU Biases, Velocities, Scale 
Divide and Conquer Solution 

 

1. Run Monocular ORB-SLAM for 10-20s 
 

 Keyframe orientation and up-to-scale translation 
 

2. Optimize Gyroscope Bias 
 

 Rotate accelerometer measurements 
 

3. Estimate Gravity Vector (no Acc. Bias) 
 

 Initial seed for gravity direction 
 

4. Optimize Gravity Direction, Acc. Bias and Scale 
 

5. Compute Velocities 

Visual-Inertial ORB-SLAM: IMU Initialization 
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Visual-Inertial ORB-SLAM: Tracking 
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Local Bundle Adjustment 

Visual-Inertial ORB-SLAM: Mapping 
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True scale (1% error) and centimeter precision 

Visual-Inertial ORB-SLAM: Results 



78 Juan D. Tardós 

Visual-Inertial Odometry: Keeps accumulating drift 

VisuaI-Inertial ORB-SLAM: Zero drift in mapped areas 

Results on EuRoC dataset 
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Raúl Mur-Artal, Juan D. Tardós,  
ORB-SLAM2: An Open-Source SLAM System 
for Monocular,  Stereo and RGB-D cameras, 
IEEE Trans. on Robotics, Oct. 2017 

Visual-Inertial ORB-SLAM: Results 
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Summary 
•  Monocular: excellent accuracy, but scale? 
•  Stereo: excellent accuracy and robustness 
•  Tightly-coupled Visual-Inertial SLAM 

– Recovers the true scale within 1% of error 

•  SLAM allows loop closing and map reuse 
– More accurate than Visual Odometry 

•  Future work:  
– Visual-inertial stereo SLAM 
– Direct SLAM 
– Deformable SLAM 
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More Information 
•  Raúl Mur-Artal, J.M.M. Montiel and Juan D. Tardós  

ORB-SLAM: A Versatile and Accurate Monocular SLAM System, 
IEEE Trans. Robotics 31(5): 1147-1163, Oct. 2015.  

•  Raúl Mur-Artal, and Juan D. Tardós.  
ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo 
and RGB-D Cameras  
IEEE Trans. Robotics 33(5): 1255-1262, Oct. 2017 

•  Raúl Mur-Artal, and Juan D. Tardós.  
Visual-Inertial Monocular SLAM with Map Reuse  
IEEE Robotics and Automation Letters 2(2): 798-803, Jan 2017 

•  Carlos Campos, José M. M. Montiel, Juan D. Tardós 
Fast and Robust Initialization for Visual-Inertial SLAM 
IEEE Int. Conf. Robotics and Automation, May 2019 

•  https://github.com/uz-slamlab 
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https://github.com/uz-slamlab 


